

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 1 on 24

Cabinet Louis Reynaud SASU - N° SIRET 83373449400010 - RCS, Marseille 833 734 494
3 rue plan cavaillon - 13420 Gémenos (France) – CLR Labs : 2 rue fougasse 13600 La Ciotat (France)

 Rue de la science 14b - 1000 Brussels (Belgium) - Web : www.cabinet-louis-reynaud.fr

Formulaire CLR.FE.004 v1.6

Document Status

Author DEMASI Thibault

Current version 1.8

Date 16/11/2023

Developers Sponsor Evaluator

Organization(s) N.A. CLR Labs as part of
the CAMPUS Cyber

work

CLR Labs

Copyrights
© Cabinet Louis Reynaud, 2023. This document is the property of the company Cabinet Louis Reynaud SASU.

Copyright and international treaty provisions protect this document. No copies or partial productions are authorized
without the written consent of the company Cabinet Louis Reynaud SASU.

http://www.cabinet-louis-reynaud.fr/

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 2 on 24

Formulaire CLR.FE.004 v1.6

Restricted

Name Organization

Anyone - Public Public review

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 3 on 24

Formulaire CLR.FE.004 v1.6

Contents
Introduction .. 4

1. Summary .. 4

1.1 Identification of the security target ... 4

1.2 Identification of the system to be evaluated ... 4

1.3 References .. 4

1.4 Definitions et abbreviations ... 5

2. Argument .. 7

2.1 General description of the system to be evaluated ... 7

2.2 Description of the use of the system to be evaluated ... 8

2.3 Description of the intended use environment ... 9

2.4 Description of dependencies .. 10

2.5 Description of typical users .. 11

2.6 Description of the scope of the evaluation .. 11

3. Description of the technical operating environment ... 12

3.1 Assets to protect .. 17

4. Environmental hypotheses ... 18

5. Threats description ... 18

6. Description of the security functions of the system to be evaluated .. 20

7. Threat Coverage ... 22

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 4 on 24

Formulaire CLR.FE.004 v1.6

Introduction
The objective of this document is to verify if the EN 17640 evaluation methodology can be used for
performing an Ethereum Nodes evaluation under the French C.S.P.N certification scheme.

This initiative has been initiated within the Crypto Asset Working Group of the French CAMPUS CYBER. CLR
Labs is the editor of this evaluation Security Target and the Crypto Asset Working Group members have
already provided their comments on this version of the document.

This document is put under public consultation in order to get some extra feedback from the Web 3.0 and
Cybersecurity ecosystems. You can provide your comment using the commenting table associated to this
document and send them to: info@cabinet-louis-reynaud.fr

1. Summary
1.1 Identification of the security target

Nodes are instantiations of Ethereum clients such as Geth, Erigon, Nethermind or Besu on servers or
computers. Nodes can have several roles including maintaining a copy, updating and communicating to their
peers the blockchain ledger. The nodes can also have the mission of validating transactions and executing
smart contracts via the Ethereum Virtual Machine (EVM). The blockchain ledger is updated by the network
of nodes via a consensus mechanism (PoS), in place since September 2022.

1.2 Identification of the system to be evaluated

Category Identification
System trade name Ethereum Nodes
Evaluated version number X
System category Blockchain, Ethereum, Crypto-assets, Smart Contract,

Decentralization

1.3 References

Code Reference Name and Source

[1] CSPN
First level security certification – A.N.S.S.I.

https://cyber.gouv.fr/documents-applicables-la-certification-de-securite-de-premier-niveau-
cspn

[2] RGPD

General Data Protection Regulation
Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the

protection of individuals with regard to the processing of personal data and on the free
movement of such data, and repealing Directive 95/ 46/EC

April 27, 2016

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 5 on 24

Formulaire CLR.FE.004 v1.6

[3] CLR.SEC.MS CLR Labs Security Manual
28 Février 2020

[4] DevP2P Networking Layer : https://ethereum.org/fr/developers/docs/networking-layer

[5] Merkle Patricia Trie Merkle Trees : https://ethereum.org/en/whitepaper/#merkle-trees

[6]

Guide on how to join
the Goerli/Prater

merge testnet
(Geth/Lighthouse)

Guide : https://github.com/eth-educators/ethstaker-guides/blob/main/merge-goerli-prater.md

[7] EN 17640
EN 17640: ‘Fixed-time cybersecurity evaluation methodology for ICT products’ helps evaluate

the cybersecurity of ICT products

1.4 Definitions et abbreviations

Name Abbreviation Definition

Agence Nationale de Sécurité des
Systèmes d’Information ANSSI

ANSSI has a mission to defend State information
systems and is responsible for providing advice and

support to administrations and operators of vital
importance.

Cabinet Louis Reynaud Labs CLR Labs Security evaluation laboratory of Cabinet Louis
Reynaud.

Internation Standard
Organisation ISO International standards body.

General Data Protection
Regulations RGPD [4]

Security Function Requirement SFR Security feature to provide a countermeasure to
potential attacks.

Target Of Evaluation TOE Product to be evaluated by the laboratory within the
scope defined with the customer.

Smart Contract

Programmable digital contract that automates the
terms and conditions of an agreement between the
parties, without the intervention of a trusted third

party. They are executed in a blockchain, guaranteeing
their immutability and transparency.

https://ethereum.org/fr/developers/docs/networking-layer
https://ethereum.org/en/whitepaper/#merkle-trees
https://github.com/eth-educators/ethstaker-guides/blob/main/merge-goerli-prater.md

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 6 on 24

Formulaire CLR.FE.004 v1.6

Blockchain

Decentralized and distributed database recording the
history of all transactions carried out on its platform.
The data blocks are cryptographically linked to each

other to form an unbroken chain. The blocks are
added to the main chain according to the consensus

rules that the blockchain validators follow.

Nodes

A computer that is part of a decentralized network
and manages transactions and maintains a copy of the
blockchain. They can validate transactions, store data,
execute smart contracts and participate in the process

of maintaining the integrity of the blockchain.

Decentralized network

A computer system that operates without a single
central authority controlling transactions and records.
Data is managed by a network of nodes distributed in

a decentralized manner.

Ethereum Eth

Specific blockchain allowing Proof Of Stake (PoS),
quasi-Turing complete, execution of smart contracts,
etc. It uses its own crypto-assets (ETH) to power the

network.

Virtual Machine VM
Computer system simulating the environment of a

physical machine. It provides abstraction of hardware
resources such as memory, processor and I/O.

Proof Of Stake PoS
It is a method by which a crypto asset blockchain aims
to achieve distributed consensus.

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 7 on 24

Formulaire CLR.FE.004 v1.6

2. Argument
2.1 General description of the system to be evaluated

There are 3 types of blockchains within the framework of Ethereum: public blockchains, private blockchains
and intermediate (or so-called semi-public) blockchains.

1. Public blockchain: A public blockchain is an open and decentralized network, accessible to
everyone. The present security target is focused on a public blockchain. Participants can join the
network, propose transactions, deploy smart contracts and participate in the consensus process.

2. Private Blockchain: A private blockchain is a network controlled and managed by an entity or
organization. Network access and read, write and transaction validation rights are limited to
authorized participants. Quorum is an example of a private Ethereum blockchain.

3. Intermediate blockchain (consortium blockchain): A blockchain sits between public and private
blockchains in terms of control and access. In this type of blockchain, the network is managed by a
set (consortium) of organizations rather than a single entity. Consortium participants collectively
control and manage the network, determine access rules and make decisions regarding its
operation.

The target is dedicated to Ethereum nodes and the different tasks dedicated to them:

• Blockchain storage: Ethereum nodes maintain a full or partial copy of the Ethereum blockchain,
which is a distributed database containing the complete history of all transactions and state
changes on the network.

• Synchronization and propagation: Ethereum nodes synchronize with each other by sharing and
verifying block and transaction information. They contribute to the propagation of data on the
network.

• Transaction Validation: Ethereum nodes validate transactions by verifying their signatures,
balances, and state data to ensure transactions are legitimate.

• Execution of smart contracts (outside the TOE): nodes execute smart contracts deployed on the
network using the EVM in a decentralized manner, verifying and applying the resulting state
changes.

• Consensus Participation: Ethereum nodes participate in the consensus mechanism to validate and
add new blocks to the blockchain. Since September 2022, with the transition from Ethereum 1.0 to
Ethereum 2.0, the network has moved from a Proof of Work (PoW) mechanism to a Proof of Stake
(PoS) mechanism.

Ethereum nodes can be full nodes, light nodes, or archive nodes:

• Full Nodes: Nodes store the entire blockchain, including all blocks, transactions, and state data.
They can validate and transmit transactions, execute smart contracts and fully participate in the
consensus process.

• Light Nodes: Light nodes store only partial information about the blockchain, such as block
headers, and rely on full nodes for state data and transactions. They are designed to work on low-
capacity devices.

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 8 on 24

Formulaire CLR.FE.004 v1.6

• Archive Nodes: Archive nodes are full nodes that also maintain the complete history of state
changes for each block.

2.2 Description of the use of the system to be evaluated
Users can create nodes and deploy smart contracts using the platform and development tools, such as Geth,
Nethermind, Besu, etc.

Here Geth (go-ethereum) will be used, for several reasons:

1. Interoperability: Geth is the official Ethereum client node and is widely used, ensuring
interoperability with other applications.

2. Complexity: Geth is relatively simple to use and configure
3. Support: Geth has great support from the Ethereum community
4. Features: Geth offers a number of additional features (support for decentralized applications, fast

synchronization, etc.)

The creation and deployment of a node will be the main functionalities of the system that will be evaluated.
A full node will be deployed using the Geth client, allowing all available functionality of the node.

For this, several steps are necessary for proper operation:

• Installation of Geth and Lighthouse (consensus client allowing the deployment of the PoS
mechanism). It is recommended to deploy nodes on Linux.

• Creation of a jwt token to authenticate the connection.
• Configuring the Geth service.
• Configuring the Lighthouse service.
• Add Ethereum funds to a user account. For a user to become a validator, they must have at least 32

eth. For personal use, it is possible to use faucets to generate Ethereum on derived networks
(Sepolia, etc.).

• Add a validator.

For more information and details, please refer to reference [6].

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 9 on 24

Formulaire CLR.FE.004 v1.6

Figure 1: Example of faucet for generating eth tests

2.3 Description of the intended use environment
Ethereum nodes are used to execute and validate transactions in the Ethereum node. They are also used to
deploy and execute smart contracts via the EVM, allowing the implementation of decentralized applications.

Ethereum nodes can be used to store and access the Ethereum database, allowing some transparency and
immutability of the information stored in the blockchain to be maintained.

Here is the flow diagram in a situation where a user wants to check their Eth balance:

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 10 on 24

Formulaire CLR.FE.004 v1.6

Figure 1 Flow when a user wants to check their balance.

Here is another flow diagram where a user makes a transaction and then executes a smart contract:

Figure 3 : Description of the evaluation scope

2.4 Description of dependencies
To function correctly, the system to be evaluated is dependent on all the elements of its environment,
namely:

• Ethereum client: It is necessary to have an Ethereum client to interact with the node (Geth for
example).

• Consensus client: It is necessary to have a consensus client (here Lighthouse) to allow a user to
become a validator.

• Platform: Geth and Lightouse are compatible with several OS, such as Windows, Linux or Mac. It is
recommended to use Linux.

• Programming language: The keystores, storing the encrypted private key, are encoded in JSON
format.

• Blockchain: Ethereum is a blockchain and its presence is necessary for the creation and execution
of smart contracts, for the validation of smart contracts, etc.

• Private/public key pair: A user has an asymmetric key pair. The public key allows the user to
generate the Ethereum address for the account, used to receive funds. The private key allows
transactions to be signed and access to funds associated with the application. The algorithm used
for key generation is Elliptic curve digital signature algorithm on the secp256k1 curve. The private
key is stored in a keystore file.

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 11 on 24

Formulaire CLR.FE.004 v1.6

2.5 Description of typical users
Users likely to interact with the system to be evaluated are:

• Developer of smart contracts
• Users of decentralized development platforms
• dApp developers
• Ethereum blockchain user
• Investors in Ethereum-based projects.
• Network Architect
• Designer of equivalent EVM solutions (Layer 2, Rollups)

2.6 Description of the scope of the evaluation
The evaluation focuses on the Ethereum node, its operation as well as certain implementations that it
defines, such as data storage, the keystore and the software allowing consensus execution.

Figure 4: Description of the evaluation scope

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 12 on 24

Formulaire CLR.FE.004 v1.6

3. Description of the technical operating environment
Communication between nodes and with the EVM:

Communication between the nodes and the EVM is done via a protocol called DevP2P. It allows nodes to
connect, share information, and synchronize network status. It uses UDP and also a mechanism called
Distributed Hash Table to allow nodes to locate and connect to each other.

Specifically, nodes will use the sub-protocol called the Ethereum Wire Protocol to exchange specific
information, such as transactions, blocks, and network state information via “messages.” Here are some main
messages:

1. Status: This message is exchanged during the initial connection between nodes and to share
information about their protocol version, the blockchain they follow, and their sync status.

2. NewBlockHashes: This message is used to inform other nodes about the discovery of new
blocks.

3. Transactions: This message is used to transmit transactions between nodes.
4. GetBlockHeaders, BlockHeaders: These messages are used to request and share block headers

during blockchain synchronization.
5. GetBlockBodies, BlockHeaders: These messages are used to request and share block bodies

during blockchain synchronization.

For more information on the protocols, please follow the reference heading [4].

Data storage and organization:

Data is stored in nodes. Each node contains a complete copy of the blockchain, containing all transactions,
account addresses, balances and deployed smart contracts. The EVM is only responsible for executing the
associated code and updating the network state based on the results of that execution. Nodes are
responsible for managing data storage and synchronization. There are different types of nodes: full nodes,
lightweight nodes, and archive nodes.

• Full nodes store the entire blockchain.
• Lightweight nodes only store block headers
• Archive nodes maintain the complete state history for each block.

The database is organized using a structure called Merkle Patricia Trie, a variation of the Merkle Tree. This
structure makes it possible to search for, insert and delete elements and to prove, using cryptographic
calculations, the existence or non-existence of the elements. Trie items are stored using a key-value
database, similar to LevelDB or RocksDB. Storage in the nodes is done in several parts:

1. Blockchain: blocks are organized in a linear manner and each block is linked to its predecessor
by a hash. Each block contains a header and a list of transactions. Block headers are stored
separately from block bodies.

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 13 on 24

Formulaire CLR.FE.004 v1.6

2. Overall state: this is the current state of the network, which includes account balances,
deployed smart contracts and their internal data. The global state is organized so that each
node in the Trie represents a state element. Each element is indexed by a key derived from its
address or identifier.

3. Transactions: Transactions are organized in a Trie within the block itself. Each block contains a
field called TransactionRoot, which is the root hash of the Transaction Trie. This allows you to
check whether a specific transaction is part of a given block using a Merkle proof (see SFR-13).

4. Receipts: Transaction receipts are also organized in a Trie. Receipts are records of the results of
transaction execution such as event logs and success or failure status. They are indexed in the
same way as transactions.

Figure 4 : How Merkle Patricia Tree works with example transactions..

For more information, see the heading [5] of the references.

Confirmation process for creating a new block

The process of confirming and sharing information when a block is created takes place in several stages:

1. Creation of a block: a validator is selected to propose a block (Proof-Of-Stake). They then gather a
set of pending transactions, execute them, create a new state of the network and construct a block
with these transactions, the result state and additional information (hash of the previous block,
root hash, etc.)

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 14 on 24

Formulaire CLR.FE.004 v1.6

2. Block Broadcast: The validator then broadcasts the new block across the network, sending it to
neighboring nodes. Neighboring nodes validate the block, and, if it is valid, add it to their own copy
of the blockchain and transmit the block to their neighbors. This propagation process continues
until the majority, or even all, of the nodes have received and validated the block.

3. Block Confirmation: Once a block is added to the blockchain, it is considered confirmed. To reduce
the risks of blockchain reorganization, a number of additional confirmations must be made before
considering a transaction as definitively confirmed.

Information contained in a keystore

Figure 5 part 1 : see Figure 5 part 2

Figure 5 part 2 : Contents of the keystore file for a user (only readable by a root user)

For each Ethereum account, a keystore file is associated with it. Below is the breakdown of the file:

• “address”: the Ethereum address associated with the private key.
• “crypto”: the encryption information used to protect the private key.

o “cipher”: the encryption algorithm used, here “aes-128-ctr” (AES with a counter mode and
a 128-bit key).

o “cyphertext”: the private key encrypted as a hexadecimal string.
o “cypherparams”: the encryption parameters, in particular the initialization of the “iv”

vector.
o “kdf”: the key derivation algorithm used to encrypt the private key, here “scrypt”.
o ''kdfparams'': parameters of the key derivation algorithm, such as derived key length

(''dklens''), memory cost (''n''), parallelism cost (''p''), CPU cost (''r'') and salt (''salt'').
o ''mac'': an integrity check value to verify that the passphrase used to decrypt the private

key is correct.
• ''id'': A unique identifier for the keystore file
• “version”: the version of the keystore format, here 3.

Steps for creating the keystore file

1. Private key generation: The private key is generated locally on the user's device.
2. Generation of the public key and Ethereum address: From the private key, a public key is generated

using elliptic curve cryptography on the secp256k1 curve. The Ethereum address is then derived
from the public key by taking the last 20 bytes of the keccak-256 (sha-3) hash of the public key.

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 15 on 24

Formulaire CLR.FE.004 v1.6

3. Private key encryption: The private key is encrypted with the AES-128-CTR algorithm with a key
derived from the passphrase. The passphrase is transformed into an encryption key using a key
derivation function (aka KDF) which is scrypt, with specific parameters.

4. Creating the keystore file: Information to decrypt the private key, such as the Ethereum address,
encryption parameters, KDF parameters, and an integrity check (MAC) value is stored in JSON
format.

Steps for using the keystore

Figure 6: Keystore usage flow

1. Use of the passphrase: The user enters their passphrase to carry out a transaction or to manage
their Ethereum account.

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 16 on 24

Formulaire CLR.FE.004 v1.6

2. Extracting keystore information: Necessary information is extracted from the keystore, including
encryption settings, key derivation algorithm (KDF) settings, and integrity check value.

3. Deriving the encryption key: The passphrase and KDF parameters extracted from the keystore are
used to derive the encryption key. This is done by applying the KDF (scrypt) algorithm with the
specified parameters.

4. Verifying keystore integrity: Before decrypting the private key, the integrity of the keystore is
verified using the MAC value. The MAC is calculated by concatenating the derived key and the
encryption result of the private key, then applying a hash algorithm (Keccak-256). If the calculated
MAC does not match the MAC stored in the keystore, it means the passphrase is incorrect or the
keystore is corrupt.

5. Decryption of the private key: If the integrity check passes, the derived encryption key and
encryption parameters are used to decrypt the private key.

6. Signing Transactions: Once the private key is decrypted, transactions are signed using elliptic curve
cryptography (ECC) on the secp256k1 curve. The signature guarantees that the user is the owner of
the Ethereum address associated with the private key.

7. Sending signed transactions: Signed transactions are then sent to the Ethereum network for
processing and inclusion in the blockchain.

Transition from Proof of Work to Proof of Stake

Since September 2022, Ethereum has moved from a Proof Of Work system to a Proof Of Stake system,
offering an alternative consensus mechanism. In the PoS system, the node with the most Ether staked is
authorized to generate blocks unlike PoW nodes where it is the nodes with the greatest computing power
that do so.

The advantages of the PoS system over the PoW system are as follows:

• Reduction of significant investments in equipment and energy, more respectful of the
environment.

• Technological and architectural improvements.

PoS introduces the concept of shard chain, smaller chains that manage part of the network data:

• Ethereum plans to have 64 of these chains.
• Validators only need to process data on the chain they are validating, reducing hardware

requirements and improving security through greater decentralization.

To become a validator, users stake 32 eths. The validators propose and validate the blocks, those who are
chosen to propose blocks are called the proposers and those who confirm the attesters. Validators risk losing
part or all their stake if they disconnect, fail to validate, or attempt to manipulate the system.

A new component, the beacon chain, ensures coordination between shard chains and maintains network
synchronization. The beacon chain also receives information about the state of the shard chains, which allows
the entire network to maintain its state. It records attestations, which are confirmations that a block appears
valid, rather than recording the transactions themselves.

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 17 on 24

Formulaire CLR.FE.004 v1.6

A minimum of 128 validators are required to attest to each block, thus forming a committee. The committee
has a deadline or window to propose and validate a block. After each series of 32 slots (epoch), the
committees are randomized to maintain network security. Validators are rewarded for proposing and
attesting blocks, but they can lose their stake if they attest a malicious or invalid block.

When a shard block receives enough attestations, a crosslink is formed, confirming the block's inclusion in
the beacon chain. Cross-links allow the beacon chain to follow the head of the shard chain, allowing all shards
to stay in sync.

Beacon node and Execution engine

2 main parts structure the Ethereum network:

1. Beacon node:
The Beacon node is responsible for managing the Ethereum PoS consensus. It takes care of the
coordination and management of PoS validators, as well as the creation and proposal of new blocks
for the blockchain. The beacon node follows the Beacon Chain, which is a separate blockchain
dedicated to PoS consensus. Validators are selected to propose blocks and attest to proposed
blocks based on their stake and other parameters. Beacon nodes also manage rewards and
penalties for validators based on their performance.

2. Execution engine:
The execution engine is responsible for executing transactions, smart contracts, and processing
network state changes. In other words, it manages all operations related to transactions and smart
contracts on the Ethereum blockchain. The Execution Engine uses the EVM to perform these
operations. It works with shard chains designed to increase network capacity and performance.

3.1 Assets to protect

Sensitive assets to
protect

Assets attached
to the

application

Location Confidentiality Integrity Availability Asset
Reference

Funds Ether funds and
assets

Node Yes Yes Yes A1

Smart contract Transactions EVM No Yes Yes A2

User public key “Public” user
information

Node No Yes Yes A3

Transactions Eth, crypto
assets

Nodes, EVM No Yes Yes A4

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 18 on 24

Formulaire CLR.FE.004 v1.6

4. Environmental hypotheses
Hypotheses Description

H1 The identity of the user of a dApp is verified beforehand by a third party.
H2 Nodes are deployed in a decentralized network.
H3 Consensus algorithms are considered secure.
H4 The EVM is considered a trusted environment.
H5 The cryptographic algorithms used, if they comply with ANSSI recommendations, are

considered secure.
H6 The evaluation is focused within the framework of the public Ethereum blockchain.
H7 The identity of the user is not entered in the nodes and will therefore not need to be

protected.

5. Threats description
Threats Description Achievement

difficulty levels to
achieve the threat

T1 An attacker carries out a Denial of Service (DoS) attack with the aim
of bringing down nodes and making them unavailable.
Objectives: network slowness, data loss, service interruption, loss
of trust.

Basic

T2 An attacker uses the node's private key to validate the transactions
he wants.
Objective: Theft of funds

Substantial

T3 An attacker carries out a Race Condition attack with the aim of
accessing a resource accessible to several threads or processes at
the same time whose final behavior depends on the order in which
these threads or processes access the resource and whose
instructions are not correctly synchronized.

Substantial

Source code Node, Ethereum Github,
Ethereum
Platform

No Yes No A5

Node private key Ethereum Node Keystore Yes Yes Yes A6

Node public key Ethereum Node Node, Ethereum
Platform

No Yes Yes A7

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 19 on 24

Formulaire CLR.FE.004 v1.6

Objectives: Competitive advantage, control of transactions,
modification of data, interference with the normal functioning of
the blockchain.

T4 An attacker carries out a front-running attack by manipulating the
order of transactions to prioritize a specific transaction over other
transactions initially scheduled to be processed first. By monitoring
pending transactions, the attacker identifies an opportunity to buy
or sell assets at a price lower than their true value. Then, the
attacker creates and broadcasts a competing transaction with
higher gas fees, tricking validators into including this transaction in
the next block before the one originally intended.
Objectives: illicit access to assets, price manipulation, theft of
sensitive information, loss of trust.

Substantial

T5 An attacker usurps a user's account to redirect funds to divert
attention in the event of an investigation (ransomware, etc.).
Objective: Diversion of attention

Basic

T6 Attackers can corrupt data stored in Ethereum nodes.
Objectives: Modification of the logic of smart contracts,
modification of the state of smart contracts, alteration of
blockchain data, interference with the normal operation of the
blockchain, theft of funds

Substantial

T7 Attackers can compromise data integrity by intercepting
communications between Ethereum nodes.
Objectives: commercial sabotage, infiltration into other systems,
preparation for subsequent attacks.

Substantial

T8 An attacker conducts a 51% attack by taking control of the majority
of the blockchain's computing power, allowing the attacker to
control transaction validation and create double spending.
Objectives: Double spending, reversal of transactions, blocking of
transactions, reduction of market confidence.

Substantial

T9 An attacker who has retrieved a user's keystore file can bruteforce
it to recover the victim's private key.
Objective: Theft of funds

Substantial

T10 An attacker can use a malicious node and make fraudulent
transactions or fund their account.
Objective: Theft of funds, competitive advantage, illicit access to
assets

Substantial

Table 1: Description of threats

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 20 on 24

Formulaire CLR.FE.004 v1.6

6. Description of the security functions of the system to be
evaluated

SFR TOE subsystem
providing SFR

Description

SFR – 1 Sandbox Virtual environment in which smart contracts execute to limit the
potential effects of programming errors.

SFR – 2 Gas limitation Limited quantity of gas allocated to a contract for its execution
SFR – 3 Checking the stack size Check to ensure that the stack size does not exceed the defined limit.
SFR – 4 Checking data types Verification ensuring that the input data is of the correct type and

complies with the contract.
SFR – 5 Verification of the

subdivision
Check on mathematical operations preventing the generation of
negative values.

SFR – 6 Verification of over-
allocation

Check on mathematical operations preventing the generation of
values greater than a predefined maximum value.

SFR - 7 Secure storage Storing data across multiple nodes, ensuring this information is secure
in the event of an outage or failure.

SFR - 8 Integrity and
authenticity of nodes

• Consensus Proof-of-Stake (PoS): Validators are chosen to
propose and validate blocks based on their stake. Validators
are incentivized to act honestly, earning rewards for correctly
validating blocks and losing slashes for malicious behavior.

• Cryptographic chaining of blocks: blocks are linked together
via hashes. Each block contains the hash of the previous block,
creating the blockchain chain going back to the genesis block.
Modifying an earlier block would mean calculating the hashes
of all subsequent blocks.

• Merkle Trees: Transactions, receipts, and overall state are
organized using a Merkle Patricia Tree structure. The hashes
of these Tries are included in the block headers. Nodes can
then verify the existence or non-existence of transactions,
receipts or state elements using Merkle proofs (see SFR – 13).

• Transaction signing: Transactions are signed by the sender
using a private key. The corresponding public key is used to
verify the authenticity of the signature.

• Node validation: Full nodes validate all transactions and
blocks before adding them to their local copy of the
blockchain. Light nodes can also verify transactions using
Merkle proofs provided by full nodes.

SFR - 9 Merkle's proofs Cryptographic mechanism for verifying that a specific item is part of a
data set. Merkle proofs are developed using Merkle trees. These are
constructed by hashing the elements of the entire data set and
grouping the hashes into pairs. The hashes of these peers are then

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 21 on 24

Formulaire CLR.FE.004 v1.6

combined and hashed again, creating a new set of hashes. This process
is repeated until only one hash remains, called the root hash. To verify
that a specific element is part of the dataset, a Merkle proof is
constructed by providing the hashes of sibling nodes (sibling) along the
element's path to the root hash. By recalculating the hashes following
the path and comparing the result with the root hash, we can confirm
whether the element is part of the dataset.

SFR - 10 Transaction validation Transactions validated using Proof-of-Stake (PoS). PoS is a consensus
method used to validate transactions and maintain network integrity.
This method does not rely on processing power, but on the active
participation of users as transaction validators.

SFR - 11 Private key storage Storage of the private key is done in a keystore file on the computer
hosting the node. This file is encrypted with a password to ensure the
security of the private key. When a node starts, it decrypts the private
key using the provided password. The keystore uses specific settings
to strengthen security against bruteforce.

Table 2: Security function (SFR)

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 22 on 24

Formulaire CLR.FE.004 v1.6

7. Threat Coverage

Sandbo
x

Gas
limitation

Checking
the stack

size

Checking
data types

Verificatio
n of the

subdivision

Verification
of over-

allocation
Secure storage

Integrity and
authenticity of

nodes

Merkel's
evidence

Transaction
validation

Private key
storage

SFR 1 SFR 2 SFR 3 SFR 4 SFR 5 SFR 6 SFR 7 SFR 8 SFR 9 SFR 10 SFR 11

Threats
Assets
concerne
d

T1 A4 * * * *

T2 A1, A4,
A6, A7

 *

T3 A4 *

T4 A4 * *

T5 A1, A3,
A4 *

T6 A1, A2,
A4 *

T7 A1, A2,
A4

 *

T8 A4 * *

T9 A1, A5 *

T10 A1, A4,
A6, A7 * *

TBble 3: Threat coverage summary

END OF DOCUMENT

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 23 on 24

Formulaire CLR.FE.004 v1.6

Form reference: CLR.FE.004

Version: 1.8

Written by:

Function Name Date
(jj/m/aaaa)

Signature

Pentester mobile et IT DEMASI Thibault 10/02/2023

Approved by:

Function Nom Date
(jj/m/aaaa)

Signature

Directeur Laboratoire MOUILLE Stéfane 16/11/2023

History of the form:

Version Redactor Date
(jj/m/aaaa)

Modification

0.1

DEMASI Thibault 16/02/2023 Creation

1.0 DEMASI Thibault 24/02/2023 Focus on nodes and not EVM
and Smart contracts

1.1 DEMASI Thibault 13/03/2023 Updated threat coverage

1.2 DEMASI Thibault 24/03/2023 Insertion of the keystore in the
technical environment

Reference:CLR.FE.004.E.2023
CLR-007

Version: 1.8

EN 17640 SECURITY EVALUATION TARGET within the
C.S.P.N certification scheme – Working document

Page 24 on 24

Formulaire CLR.FE.004 v1.6

1.3 DEMASI Thibault 03/04/2023 TOE update and various
corrections

1.4 DEMASI Thibault 30/05/2023 Modification of the TOE,
addition of information on the
PoS and the beacon Chain and

various modifications.

1.5 DEMASI Thibault 08/06/2023 Miscellaneous changes

1.6 DEMASI Thibault 04/07/2023 Correction on threat coverage

1.7 DEMASI Thibault 30/08/2023 Integration of some comments

1.8 MOUILLE Stefane 16/11/2023 Translation in English language

FIN DE DOCUMENT

	Introduction
	1. Summary
	1.1 Identification of the security target
	1.2 Identification of the system to be evaluated
	1.3 References
	1.4 Definitions et abbreviations

	2. Argument
	2.1 General description of the system to be evaluated
	2.2 Description of the use of the system to be evaluated
	2.3 Description of the intended use environment
	2.4 Description of dependencies
	2.5 Description of typical users
	2.6 Description of the scope of the evaluation

	3. Description of the technical operating environment
	3.1 Assets to protect

	4. Environmental hypotheses
	5. Threats description
	6. Description of the security functions of the system to be evaluated
	7. Threat Coverage

